If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+14=63
We move all terms to the left:
7x^2+14-(63)=0
We add all the numbers together, and all the variables
7x^2-49=0
a = 7; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·7·(-49)
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{7}}{2*7}=\frac{0-14\sqrt{7}}{14} =-\frac{14\sqrt{7}}{14} =-\sqrt{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{7}}{2*7}=\frac{0+14\sqrt{7}}{14} =\frac{14\sqrt{7}}{14} =\sqrt{7} $
| x-0.6=312 | | K(x)=-4+2xK(36)= | | 10(x^2-5)=75 | | K(x)=-4+2x | | 80x^2=80 | | 3^y+1=8 | | 9(x+1)-(x+2)=-79 | | 10+5b=-60 | | 2p^2+13p-24=0 | | 8(s-9)=-5+(-4) | | Y=3x+13.5 | | 9(x+1-(x+2)=79 | | y=5.9+139.9(264) | | 1+12=6y | | 6x+10=15-4x | | 8(x^2-10)=40 | | -3+12=6y | | 5(4-t)=9 | | -10+3f=9+3f | | 129+(x+19)=180 | | -4+12=6y | | 6b+4=3b-20 | | 8=-5(k-6) | | 6b+4=3b-30 | | 3.5x-5=2.5x+3 | | 4+12=6y | | 8=-5(k-6 | | 3+12=6y | | 24=2x+8+6x | | -4(a-11)=2+(-9) | | 18=5(x-2)+3x-4 | | 2x+4x-x=6x |